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the liquid and t is the surface tension. This choice of time-
scale makes the scaled surface tension equal to 1; i.e., theA system of partial differential equations that approximate the

governing equations for inviscid free surface flow subject to surface Weber number is set to one. Henceforth, only the scaled
tension is presented. The approximation is based on linearizing the problem will be considered. Let x and y be the Cartesian
velocity together with a small scale approximation of the perturba- coordinates in the cross-sectional plane of the jet, and let
tion of the velocity. Two Dirichlet problems must be solved to form

t be the time. We assume that the liquid occupies the simplythe approximate system, after which it can be evolved without solv-
connected time-dependent domain V(t) with a smoothing Dirichlet problems. The accuracy of the solution is determined

by how often the velocity term is linearized. This time-interval is boundary G(t). It is convenient to describe the motion in
called DT. We show that the error in the solution of the approximate the positively oriented Lagrangian coordinate 0 # a # 2f,
system at a fixed time T is of the order O (DT 2). We demonstrate such that the boundary at time t $ 0 is given by x 5 X(a,
numerically that the error is closely correlated to the size of the

t), y 5 Y(a, t) and the velocity potential on the boundarynormal velocity and that there is a stability limit of the form DT #
is f 5 f(a, t). The governing equations for f, X, Y onC/(uunuy)c, where un denotes the normal velocity of the free surface

and c P 2.6. Importantly, C is independent of the resolution, so the G(t) are
time-step DT can be chosen independently of the number of grid
points, N. This is in contrast to the original system, where the stabil-

ft 5 As(u2 1 v2) 2 k, (1)ity limit of the time-step is Dt # O (N 23/2) and a fixed number of
Dirichlet problems have to be solved per time-step. By numerical Xt 5 u, (2)
experiments, we demonstrate that the approximate system requires
less than 10% of the CPU time used by the original system to solve Yt 5 v, (3)
the problem very accurately. Q 1996 Academic Press, Inc.

for t $ 0 subject to the 2f-periodic initial conditions f(a,
0) 5 f0(a), X(a, 0) 5 X0(a), and Y(a, 0) 5 Y0(a). The

1. INTRODUCTION
curvature of the boundary is

In this paper we consider the two-dimensional approxi-
k 5 s 3(Xa Yaa 2 Ya Xaa), s 5 1/ÏX 2

a 1 Y 2
a, (4)mation of a slender nonaxisymmetric three-dimensional

jet subject to surface tension, where the evolution of the
and the boundary velocity components satisfyflow in the cross section of the jet is governed by the two-

dimensional incompressible Euler equations inside of the
u(a, t) 5 cx(X(a, t), Y(a, t)), (5)free surface; cf. [7]. The velocity field is assumed to be

irrotational, so there exists a velocity potential which satis- v(a, t) 5 cy(X(a, t), Y(a, t)), (6)
fies Laplace’s equation in the interior of the jet subject to
Bernoulli’s equation and the kinematic condition on the where c 5 c(x, y) is the solution of the Dirichlet problem
free surface. This type of potential flow problem with sur-
face tension has been simulated numerically by many inves-

Dc 5 0, in V(t), (7)
tigators; see, for example [3, 14]. The focus of the present

c(X(a, t), Y(a, t)) 5 f(a, t), 0 # a # 2f. (8)work is to develop an alternative approach to [11] for
reducing the great computational cost of integrating the
governing equations numerically, which is caused by the Since the shape of the domain depends on time, it is

rather expensive to compute the boundary velocity by nu-stiffness of the discrete system due to surface tension.
We scale the physical problem by the length scale L merically solving (7), (8), followed by evaluating (5), (6).

Instead we will apply an equivalent boundary integral for-such that the area of the scaled initial domain equals f,
and by a time-scale T 5 ÏrL3/t. Here, r is the density of mulation of the Dirichlet problem. For a derivation we
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refer to [2, 6]. In this method, we first compute the (unnor- evaluated. The cost of performing these tasks is of the
order O(N 2) operations if direct summation is used ormalized) vortex sheet strength c(a, t) by solving the

Fredholm integral equation of the second kind, O(CN) operations, where C is a large constant, if the fast
multipole method [9] is applied.

In the recent paper [11], a method was proposed to
fa(a, t) 5

c(a, t)
2

(9) alleviate the stiffness of the more general equations gov-
erning the two-dimensional motion of two immiscible ideal
fluids subject to surface tension. The governing equations1 Re HZa(a, t)

2fi
P.V. E2f

0

c(a9, t)
Z(a9, t) 2 Z(a, t)

da9J,
were reformulated using the arc-length and tangent-angle
variables, instead of the Cartesian coordinates X and Y to
describe the position of the interface. It is shown that thewhere Z(a, t) 5 X(a, t) 1 iY(a, t). The velocity on the
curvature term becomes linear in terms of these variables.boundary is then computed by evaluating the integral
This property, together with a small-scale approximation
of the velocity, enabled the authors to devise a fast implicit

u(a, t) 2 iv(a, t) 5
c(a, t)

2Za(a, t)
(10) time-integration method to solve the reformulated equa-

tions in the case of zero density stratification between the
fluids. The method has more recently also been extended1

1
2fi

P.V. E2f

0

c(a9, t)
Z(a9, t) 2 Z(a, t)

da9.
to handle the presence of a finite density stratification
across the interface.

As is noted in [11], the tangential velocity of the gridHenceforth, we will denote Eqs. (1)–(4), (9), and (10) the
full system. points is only dictated by the parameterization of the solu-

tion. It would, therefore, be possible to partially reduceThe linearized motion of the related problem governing
inviscid water waves subject to surface tension was ana- the stiffness of the equations by using a non-Lagrangian

parameterization of the solution and prescribing a tangen-lyzed by [6]. By projecting the surface coordinates onto
the local normal and tangential components, it was found tial velocity that, for example, distributes the grid points

uniformly with respect to arc-length. This possibility willthat the linearized equations have a tractable form which
enabled the authors to prove well-posedness of the linear- not be investivated further here.

In the present paper, we propose an alternative approachized system in a Sobolev space of finite order. This work
was extended by [5] to the spatially discrete case, were to [11] to handle the stiffness imposed by surface tension.

Here, we will take advantage of the leading order structurestability and convergence was proven for a pseudo-spectral
discretization of the nonlinear problem. It was found that of the linearized equations proved by [6, 13] to derive an

approximate system which can be integrated much fasterthe particular type of spatial discretization is very im-
portant in order for certain unbounded operators to cancel than the full system. The approximate system is derived

in the following way. Let T and N denote the unit tangentto highest order. A similar result was found by [4] who
considered the linearized stability properties of different and normal vectors of the boundary. The velocity can be

decomposed asnumerical schemes for a vortex sheet subject to surface
tension close to equilibrium.

When the full system is discretized in space by the
u ;Su

v
D5 (u ? T )T 1 (u ? N)N.pseudo-spectral method, the highest spatial frequency on

the grid is g 5 N/2, where N is the number of grid points
in the discretization of the free surface. In Section 2, we will

The tangential component of the velocity equals the tan-carry out a simplified version of the general linearization
gential derivative of the velocity potential, i.e., u ? T 5performed in [6, 13] to show that because of surface ten-
sfa. However, the computation of the normal componentsion, the linearized equations have eigenvalues with imagi-
u ? N requires the solution of (9), (10), which we want tonary part of the order O((maxa s(a, t)g)3/2). Hence, when
avoid. The velocity u depends on f, X, and Y. By lineariz-the discretized equations are integrated in time, the time
ing u around f(0), X (0), and Y (0) and letting f 5 f(0) 1step is restricted by the stability constraint Dt # O((maxa
«f9, X 5 X (0) 1 «X9, Y 5 Y(0) 1 «Y9, we gets(a, t)N)23/2). The stability limit of the time-step can be-

come increasingly restrictive with time if s becomes large,
u 5 u(0) 1 «u9 1O(«2), (11)i.e., if the Lagrangian grid points cluster. The time-step

restriction together with the clustering of grid points make
u9 5

­u
­f

f9 1
­u
­X

X9 1
­u
­Y

Y9. (12)the time-integration expensive, because the integral equa-
tion (9) must be solved and the velocity integral (10) must
be calculated every time the right-hand side of (1)–(3) is After some analysis, which we defer to Section 3, we show
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step limit for the discretized version of (16), (17), andthat the tangential component of the perturbation of the
velocity is (18) is also of the order Dt # O((maxa s(a, t)N)23/2). The

significant advantage of the approximate system is that the
right-hand side of (16)–(18) can be evaluated by computingu9 ? T (0) 5 s (0)(f9a 2 u(0)X 9a 2 v(0)Y 9a). (13)
spatial derivatives followed by applying H. Both of these
tasks can be done very quickly by the pseudo spectralWe use the theory in [6, 13] to motivate the approximation
method which requires O(N log(N)) operations.of the normal component of the perturbation of the ve-

We start integrating the approximate system at t0 5 0,locity,
where we take f(0) 5 f0, X(0) 5 X0, Y (0) 5 Y0. First we
compute u(0) and Gi, i 5 1, 2, 3, to set up the approximate

u9 ? N(0) P s (0)H(f9a 2 u(0)X 9a 2 v(0)Y 9a), (14)
system. The system is then integrated in time until t 5
t0 1 DT, after which the linearization of the velocity is

where the operator H has Fourier symbol i sgn(g). In those redone around f(0)(a) 5 f̃(a, t0 1 DT), X(0)(a) 5 X̃(a,
papers, it is shown that the error in u9 ? N (0) is a smoothing t0 1 DT), Y(0)(a) 5 Ỹ(a, t0 1 DT), and a new approximate
operator of the perturbations f9, X 9, and Y 9. This means system is formed. This procedure is repeated for as long
that the contribution to the error is dominated by the as the equations need to be integrated. An error is commit-
low frequency components of f9, X 9, and Y9 and that the ted by approximating the normal component of the veloc-
contribution from the high frequency components tend to ity. We show in Section 3 that this error is of the order
zero as the frequency of the perturbation tends to infinity.

O(DT 3), which implies that the error at a fixed time T is
The velocity is therefore approximately of the orderO(DT 2). We remark that the time-step between

linearizing the velocity, DT, is different from the explicit
u P u(0) 1 «T (0)(u9 ? T (0)) 1 «N (0)(u9 ? N (0)).

time-step Dt, which is used when the approximate system
is integrated in time from t0 to t0 1 DT.Because the tangential component of the velocity is known

The remainder of the paper is organized as follows. Inexactly, we will only use the above expression for the
Section 4 we discretize both the full and the approximatenormal component of the velocity. We have T (0) ? N 5
systems by the pseudo-spectral method in space. The de-

O(«), N (0) ? N 5 1 1 O(«2), and s 5 s (0) 1 O(«), so it is
tails of the discretization are essential for the temporalconsistent with the linearization to take the approximate
stability of the spatially discrete problem. For the full sys-velocity ũ P u to be
tem, which will be used to validate the approximate equa-
tions, we will use the discretization developed by [5]. In
this method, the ‘‘alternating-point-trapezoidal’’ quadra-ũ ;Sũ

ṽ
D5 T (sfa) (15)

ture rule, together with a Fourier filter, is used to discrete
the integral equation for the vortex sheet strength and the

1 N(u(0) ? N 1 «sH(f9a 2 u(0)X 9a 2 v(0)Y 9a)). velocity integral. The curvature is discretized by Fourier-
filtered spectral derivatives. A similar technique is used to

In the approximate system we replace the exact velocity discretize the approximate system. We close the section
by the approximation (15). To compensate for the smooth with a discussion of the stability and efficiency of different
error in (15), we also introduce a time-dependent forcing time-integration methods. In Section 5, we perform numer-
which will be derived in Section 3. We arrive at ical experiments to investigate how the resolution affects

the solution of the full system and to study the stability
f̃t 5 As(ũ2 1 ṽ2) 2 k 1 (t 2 t0)G1, (16) and accuracy of the approximate method. Some concluding

remarks are made in Section 6.X̃t 5 ũ 1 (t 2 t0)G2, (17)

Ỹt 5 ṽ 1 (t 2 t0)G3, (18) 2. ANALYSIS

The purpose of the analysis presented here is to estimatefor t $ t0 subject to the 2f-periodic initial conditions f̃
(a, t0) 5 f(0)(a), X̃(a, t0) 5 X (0)(a), and Ỹ(a, t0) 5 Y (0)(a). the eigenvalues of the linearized operator with frozen coef-

ficients. This information is necessary for selecting an ap-Computing the velocity u(0) requires one solution of (9),
(10), and calculating the forcing terms Gi, i 5 1, 2, 3, propriate time-integration method and for estimating the

stability constraint of the time step. For simplicity, we onlyrequires another solution of those equations. Hence, after
(9), (10) have been solved twice, the approximate system consider a special case. We refer to [6, 13] for a derivation

of the linearized operator in the general case.can be evolved without solving those equations. It should
be noted that the stability restriction on the approximative To perform the analysis, we find it convenient to use

the original formulation of the boundary velocity (5)–(8).system is similar to the full system, so the explicit time-
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We begin by linearizing (1)–(8) around a solution f(0) the shape of the domain only. For the first term, we have
u[f9, X (0), Y (0)] 5 c I

x (X (0), Y (0)) and v[f9, X (0), Y (0)] 5(a, t), X (0)(a, t), and Y (0)(a, t). Denote the velocity compo-
nents by c I

y (X (0), Y (0)), where c I is the solution of

u(0) 5 u[f(0), X (0), Y (0)], (19) Dc I 5 0, in V(0), (32)

v(0) 5 v[f(0), X (0), Y (0)]. (20) c I(X (0)(a, t), Y (0)(a, t)) 5 f9(a, t), 0 # a # 2f, (33)

Let f(«) 5 f(0) 1 «f9, X («) 5 X (0) 1 «X9, and Y («) 5 Here, V(0) corresponds to the domain interior to the bound-
Y (0) 1 «Y9, where 0 , « ! 1. We have ary x 5 X (0)(a, t), y 5 Y (0)(a, t).

The second term of the right-hand sides of (30) and (31)
u[f(«), X(«), Y(«)] 5 u(0) 1 «u9 1O(«2), (21) can be written as

v[f(«), X(«), Y(«)] 5 v(0) 1 «v9 1O(«2), (22)
u[f(0), X («), Y («)] 5 c II

x (X («), Y («)),

with
and a corresponding expression for v, where c II is the
solution of

u9 5 lim
«R0

1
«

(u[f(«), X(«), Y(«)] 2 u(0)), (23)

Dc II 5 0, in V(«), (34)
v9 5 lim

«R0

1
«

(v[f(«), X(«), Y(«)] 2 v(0)). (24) c II(X («)(a, t), Y («)(a, t)) 5 f(0)(a, t), 0 # a # 2f. (35)

Here V(«) corresponds to the domain interior to the per-Neglecting theO(«2) terms yields the following linear prob-
turbed boundary x 5 X(«)(a, t), y 5 Y («)(a, t).lem for the perturbations:

In the general case, the term c II is difficult to analyze,
because it is not trivial to estimate how the normal deriva-f9t 5 u(0)u9 1 v(0)v9 2 k9, (25)
tive of c II depends on the perturbation of the shape. To
circumvent this problem, we will restrict the analysis toX9t 5 u9, (26)
the special case when

Y 9t 5 v9. (27)

f(0)(a, t) 5 C 2
t
R

, C 5 const, (36)
The perturbation of the curvature is

X (0)(a, t) 5 R cos a, (37)
k9 5 (s(0))3(Y 9aa X (0)

a 2 X 9aa Y (0)
a 1 X 9a Y (0)

aa 2 Y 9a X (0)
aa ) (28)

Y (0)(a, t) 5 R sin a, (38)
2 3k(0)(s (0))2(X 9a X (0)

a 1 Y 9a Y (0)
a ).

which is a solution of (1)–(3). Now, =c II 5 0 and it is
In this expression k(0) is the curvature of the unperturbed sufficient to study the contribution from c I.
boundary and the normalization factor is Let (r, a) be polar coordinates, i.e., x 5 r cos a, y 5 r

sin a. The Dirichlet problem on a circular domain with
s (0) 5 1/Ï(X (0)

a )2 1 (Y (0)
a )2. (29) radius R,

Because u and v are linear in f, it is clear that the Dĉ 5 0, 0 # r # R, 0 # a # 2f, (39)
perturbations of u and v can be split according to

ĉ 5 eiga, 0 # r # R, 0 # a # 2f, (40)
u[f(«), X («), Y («)] 5 «u[f9, X (0), Y (0)] 1 u[f(0), X («), Y («)]

where g 5 0, 61, 62, ..., is solved by
1O(«2), (30)

v[f(«), X («), Y («)] 5 «v[f9, X (0), Y (0)] 1 v[f(0), X («), Y («)]
ĉ(r, a) 5 S r

RDugu

eiga. (41)
1O(«2). (31)

The first term on the right-hand sides of (30) and (31) On the boundary r 5 R, we have ĉr 5 ugueiga/R and ĉa 5
igeiga. Therefore, the relation between the inward normalcorresponds to a perturbation of the boundary value only

and the second term is the contribution from perturbing and tangential derivatives becomes



FAST COMPUTATION OF 2D JET 413

ĉn 5 i sgn(g)ĉs , (42) The eigenvalues of A are the roots of det(A 2 lI) 5
0, where

where s is the arc-length. This formula defines the Fourier
symbol for the relation between the inward normal and det(A 2 lI) 5 2l3 1 lig(s (0))4((2a12g2 1 b12ig)b21 (51)
tangential derivative for general boundary data,

1 (2a13g2 1 b13ig)b31).
c I

n(a) 5 H(c I
s)(a). (43)

One root is l(1) 5 0 and after some algebra we find that
Hence, by transforming the tangential and normal deriva- the other two roots are the solutions of
tives of c to the x and y directions, we arrive at

l2 5 2(s (0))3ugu3 2 2k(0)(s (0))2g2 1 (s (0))2s (0)
a igugu. (52)

c I
x 5 s (0)(X(0)

a 2 Y(0)
a H) s (0)f9a, r 5 R, (44)

In our case, k(0) 5 1/R, s (0) 5 1/R, so s (0)
a 5 0, and the solu-c I

y 5 s (0)(Y(0)
a 1 X(0)

a H) s (0)f9a, r 5 R. (45)
tions of (52) become purely imaginary:

The system (25)–(27) now takes the form
l(2,3) 5 6i(s (0)ugu)3/2Ï1 1 2/ugu. (53)

f9t 5 2(s (0))3(Y 9aa X(0)
a 2 X 9aa Y(0)

a 1 X 9a Y(0)
aa 2 Y 9a X(0)

aa )

3. THE APPROXIMATE SYSTEM
1 3k(0)(s (0))2(X 9a X(0)

a 1 Y 9a Y(0)
a ), (46)

When the discretized version of the full system is inte-
X9t 5 s (0)(X (0)

a 2 Y(0)
a H) s (0)f9a, (47) grated in time, the boundary velocity (u, v) must be evalu-

ated a constant number of times per time step, where theY9t 5 s (0)(Y (0)
a 1 X(0)

a H) s (0)f9a, (48)
constant depends on the time-integration method. Each
evaluation requires the solution of the integral equation

Freezing the coefficients and Fourier-transforming the de-
(9) for the vortex sheet strength followed by calculating

pendent variables yields
the velocity integral (10). Even though the vortex sheet
strength changes very little between each time step and
iterative methods can be constructed that only require a
few iterations to find the solution, we have found that the­

­t 1
f̂9

X̂9

Ŷ9
25 A 1

f̂9

X̂9

Ŷ9
2, (49)

bulk of the computation consists of solving (9) and (10).
In this section we derive the approximate system which
can be integrated much faster than the full system because

where (9), (10) can be solved less frequently. The approximation
is based on linearizing the velocity terms in the governing
equations followed by approximating the solution of
Dirichlet’s problem.

A 5 (s (0))2 1
0 2a12g2 1 b12ig 2a13g2 1 b13ig

b21ig 0 0

b31ig 0 0
2. We will estimate the error in the solution of the approxi-

mate system in the L2-norm, which we define for 2f-peri-
odic vector functions F 5 (F1, F2, F3)T and G 5 (G1, G2,

(50) G3)T, according to

The coefficients are
iGi2 5 kG, Gl1/2

2 , kF , Gl2 5 E2f

0
O3
i50

F*i (a)Gi (a) da. (54)
a12 5 s (0)Y (0)

a ,

a13 5 2s (0)X (0)
a , We proceed by improving the analysis of the linearized

velocity (12) to allow for a nonconstant f(0)(a) and includeb12 5 3k(0)X (0)
a 2 s (0)Y (0)

aa ,
effects from the term =c II, defined by (34), (35). As in [6,

b13 5 3k(0)Y (0)
a 1 s (0)X (0)

aa , 13], we find it convenient to decompose u9 into its normal
and tangential components. Let the unperturbed inwardb21 5 X (0)

a 2 Y (0)
a i sgn(g),

unit normal vectors be N(0) and the unperturbed unit tan-
b31 5 Y (0)

a 1 X (0)
a i sgn(g), gent vector be T (0). In terms of X(0) and Y(0),
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u ? T (0) 5 =c I ? T (0) 1 lim
«R0

1
«

(sf(0)
a T ? T (0)

T (0) 5 s (0)SX(0)
a

Y(0)
a

D, N(0) 5 s (0)S2Y(0)
a

X(0)
a

D. (55)

1 (u(0) ? N(0) 1O(«))N ? T (0) 2 s (0)f(0)
a )

We easily get from (23) and (24),
5 s (0)Sf9a 2 ((u(0) ? T (0))T (0) (64)

u9 ? T (0) 5 =c I(X(0), Y(0)) ? T (0)

1 (u(0) ? N(0))N(0)) ?SX9a

Y9a
DD1 lim

«R0

1
«

(=c II(X, Y) ? T (0) 2 u(0) ? T (0)) (56)

u9 ? N(0) 5 =c I(X(0), Y(0)) ? N(0)
5 s (0) (f9a 2 u(0)X9a 2 v(0)Y9a).

1 lim
«R0

1
«

(=c II(X, Y) ? N(0) 2 u(0) ? N(0)). (57) We remark that only geometrical arguments were used in
the derivation of u9 ? T (0). Hence, c I and c II being solutions
of Laplace’s equation has no bearing on the form of

The gradient of c II can be written as u9 ? T (0).
The normal component u9 ? N(0) is more difficult to ana-

lyze, because it requires knowledge of how the normal
=c II 5

­c II

­s
T 1

­c II

­n
N, (58) derivative of the solution of Dirichlet’s problem depends

on the shape of the domain V. Without analysis, but recall-
ing from (43) the exact relation between the inward normal
derivative and the tangential derivative when the domainwith ­/­s being the derivative with respect to arc-length and
is circular, we will approximate u9 ? N(0) by­/­n being the inward normal derivative. Straightforward

algebra yields

u9 ? N(0) P s (0)H(f9a 2 u(0)X9a 2 v(0)Y9a). (65)

It can be shown that the error in the approximate normals 5 s (0) 2 «(s (0))2T (0) ?SX9a

Y9a
D1O(«2) (59)

velocity is a smoothing operator of f9, X9, and Y9; cf. [6,
13]. The linearized velocity (12) satisfies

and u9 5 T (0)(u9 ? T (0)) 1 N(0)(u9 ? N(0)).

Because the tangential component of the velocity is knownT ? T (0) 5 1 1O(«2), (60)
exactly, we will only use the above expression for the
normal component of the velocity. We have T (0) ? N 5

N ? T (0) 5 2«s (0) N(0) ?SX9a

Y9a
D1O(«2). (61) O(«), N(0) ? N 5 1 1 O(«2), and s 5 s (0) 1 O(«), so it is

consistent with the linearization to take the approximate
velocity ũ P u to be

We now study the tangential component u9 ? T (0). We have

ũ ;Sũ

ṽ
D5 T(sfa) 1 N(u(0) ? N (66)

u(0) ? T (0) 5 s (0)f(0)
a ,

­c II

­n
5 u(0) ? N(0) 1O(«) (62)

1 «sH(f9a 2 u(0)X9a 2 v(0)Y9a)).

and, because c II satisfies (35), In the approximate system we replace the exact velocity
by the approximation (66). To compensate for the smooth
error in (66), we also introduce a time-dependent forcing­c II

­s
5 sf(0)

a . (63) which we will present below. This results in the system
(16)–(18).

We will derive the optimal form of the forcing Gi,
i 5 1, 2, 3, and estimate the error in the solution of theHence, (56) and (58) yield
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approximate system by solving both the full and approxi- The O((t 2 t0)2) terms are
mate systems by asymptotic expansions in time. We start
by considering the full system for t $ t0 subject to the

f(2) 5 u(0) H­u
­f

f(1) 1
­u
­X

X (1) 1
­u
­Y

Y (1)Jinitial conditions,

f(a, t0) 5 f(0)(a), (67) 1 v(0) H­v
­f

f(1) 1
­v
­X

X (1) 1
­v
­Y

Y (1)J
X(a, t0) 5 X(0)(a), (68)

2
­k

­X
X (1) 2

­k

­Y
Y (1), (78)Y(a, t0) 5 Y(0)(a). (69)

X (2) 5
­u
­f

f(1) 1
­u
­X

X (1) 1
­u
­Y

Y (1), (79)For t: 0 # t 2 t0 ! 1, we make the ansatz

Y (2) 5
­v
­f

f(1) 1
­v
­X

X (1) 1
­v
­Y

Y (1). (80)
f(a, t) 5 f(0)(a) 1 Op

k51

1
k

(t 2 t0)kf(k)(a) 1O((t 2 t0) p11),

For the approximate system, we make the correspond-
X(a, t) 5 X(0)(a) 1 Op

k51

1
k

(t 2 t0)kX(k)(a) 1O((t 2 t0) p11), ing ansatz,

Y(a, t) 5 Y(0)(a) 1 Op
k51

1
k

(t 2 t0)kY(k)(a) 1O((t 2 t0) p11). f̃(a, t) 5 f(0)(a) 1 Op
k51

1
k

(t 2 t0)kf̃(k)(a) 1O((t 2 t0)p11),

(70) X̃(a, t) 5 X (0)(a) 1 Op
k51

1
k

(t 2 t0)kX̃(k)(a) 1O((t 2 t0)p11),

The velocity satisfies (11) and by linearizing the curvature,
Ỹ(a, t) 5 Y (0)(a) 1 Op

k51

1
k

(t 2 t0)kỸ(k)(a) 1O((t 2 t0)p11).we get

(81)
k 5 k(0) 1 «k9 1O(«2), (71)

Proceeding in the same way as for the full system, the
terms in the asymptotic expansion for the solution of thek9 5

­k

­X
X9 1

­k

­Y
Y9. (72)

approximate system become

Hence, inserting (70) into both (11) and (71) yields f̃(1) 5 As ((u(0))2 1 (v(0))2) 2 k(0), (82)

X̃ (1) 5 u(0), (83)

u 5 u(0) 1 (t 2 t0) H­u
­f

f(1) 1
­u
­X

X (1) 1
­u
­Y

Y (1)J Ỹ (1) 5 v(0). (84)

1O((t 2 t0)2), (73) The O((t 2 t0)2) terms are

k 5 k(0) 1 (t 2 t0) H­k

­X
X (1) 1

­k

­Y
Y (1)J

f̃ 5 u(0) H­ũ
­f

f(1) 1
­ũ
­X

X (1) 1
­ũ
­Y

Y (1)J
1O((t 2 t0)2). (74)

1 v(0) H­ṽ
­f

f(1) 1
­ṽ
­X

X (1) 1
­ṽ
­Y

Y (1)J
We determine the functions f(k), X (k), Y (k) by inserting
(70), (73), and (74) into the system (1)–(3) and identifying

2
­k

­X
X (1) 2

­k

­Y
Y (1) 1 G1 , (85)

the terms with the same power in t 2 t0 . This results in

X̃ (2) 5
­ũ
­f

f(1) 1
­ũ
­X

X (1) 1
­ũ
­Y

Y (1) 1 G2 , (86)f(1) 5 As ((u(0))2 1 (v(0))2) 2 k(0), (75)

X (1) 5 u(0), (76)
Ỹ (2) 5

­ṽ
­f

f(1) 1
­ṽ
­X

X (1) 1
­ṽ
­Y

Y (1) 1 G3 . (87)
Y (1) 5 v(0). (77)
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By comparing the terms in the asymptotic expansions, u(t0 1 DT) ; u[f̃(t0 1 DT), X̃(t0 1 DT), Ỹ(t0 1 DT)]
we see that f(1) 5 f̃(1), X (1) 5 X̃ (1), and Y (1) 5 Ỹ (1). Further-

5 u[f(t0 1 DT), X(t0 1 DT), Y(t0 1 DT)] (91)more, the O((t 2 t0)2) terms will be identical if we take the
forcing to be 1O(DT 3).

In the same way, the curvature satisfies
G1 5 u(0) H­u

­f
f(1) 1

­u
­X

X (1) 1
­u
­Y

Y (1) 2
­ũ
­f

f(1)

k[X(t0 1 DT), Y(t0 1 DT)] 5 k[X̃(t0 1 DT), Ỹ(t0 1 DT)]
2

­ũ
­X

X (1) 2
­ũ
­Y

Y (1)J 1O(DT 3).

1 v(0) H­v
­f

f(1) 1
­v
­X

X (1) 1
­v
­Y

Y (1) 2
­ṽ
­f

f(1)
We also evaluate the approximate velocity

2
­ṽ
­X

X (1) 2
­ṽ
­Y

Y (1)J , (88) ũ(t0 1 DT) ; ũ[f̃(t0 1 DT), X̃(t0 1 DT), Ỹ(t0 1 DT)].

G2 5
­u
­f

f(1) 1
­u
­X

X (1) 1
­u
­Y

Y (1) At time t0 1 DT, the time-derivative of the error there-
fore satisfies

2
­ũ
­f

f(1) 2
­ũ
­X

X (1) 2
­ũ
­Y

Y (1), (89)
(f 2 f̃)t 5 As uu(t0 1 DT)u2 2 As uũ(t0 1 DT)u2 2 DTG1

G35
­v
­f

f(1) 1
­v
­X

X (1) 1
­v
­Y

Y (1) 1O(DT 3), (92)

(X 2 X̃)t 5 u(t0 1 DT) 2 ũ(t0 1 DT) 2 DTG2

2
­ṽ
­f

f(1) 2
­ṽ
­X

X (1) 2
­ṽ
­Y

Y (1) . (90)
1O(DT 3), (93)

(Y 2 Ỹ)t 5 v(t0 1 DT) 2 ṽ(t0 1 DT) 2 DTG3

By this choice of forcing, the difference will satisfy (f 2 1O(DT 3), (94)
f̃, X 2 X̃, Y 2 Ỹ)T 5 O((t 2 t0)3). We remark that the
forcing terms are easily computed by numerical differentia-

Hence, the difference between the third-order terms in thetion, i.e.,
asymptotic expansions fulfill

­u
­f

f(1) 1
­u
­X

X (1)1
­u
­Y

Y (1)

f(3) 2 f̃(3) 5
1

DT 2 S1
2

uu(t0 1 DT)u2 2
1
2

uũ(t0 1 DT)u2

5 lim
«R0

1
«

(u[f(0) 1«f(1),X (0) 1«X (1),Y (0) 1«Y (1)]2u(0)),
2 DTG1D :5 D1 , (95)

and a corresponding expression for the v component of the X (3) 2 X̃ (3) 5
1

DT 2 (u(t0 1 DT) 2 ũ(t0 1 DT)
velocity. In the practical computation, « is taken to be a small
positive number. 2 DTG2) :5 D2, (96)

The approximate system will be integrated up to time
t 5 t0 1 DT, after which the linearization of the velocity is Y (3) 2 Ỹ (3) 5

1
DT 2 (v(t0 1 DT) 2 ṽ(t0 1 DT)

redone and a new approximate system is formed. The error
in the approximate solution at time t0 1 DT can be estimated in 2 DTG3 :5 D3 , (97)
the following way. Lets denote the solution of the approximate
system at time t0 1 DT by f̃(t0 1 DT), X̃(t0 1 DT), and
Ỹ(t0 1 DT). From the previous analysis, we have that the as DT R 0. By neglecting the fourth-order terms in the

asymptotic expansions, the error at time t0 1 DT approxi-error in that solution is of the order O(DT 3). Hence, the
exact velocity at that time can be approximated by mately satisfies
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therefore be described at some length. For the full system,
which will be used to validate the approximate equations,

iei2 P
DT 3iDi2

3
, e 5 F 2 F̃, F 5 1

f

X

Y
2 , we will apply the discretization suggested by [5]. That

scheme was rigorously proven to be stable and convergent
when it is applied to the equations governing inviscid water
waves with or without surface tension. For the present
problem, the stability and convergence will be investigated

F̃ 5 1
f̃

X̃

Ỹ
2 , D 5 1

D1

D2

D3
2 . numerically in Section 5.

We define a grid on the boundary by aj 5 ( j 2 1)h, j 5
1, 2, ..., N, h 5 2f/N, and let fj 5 f(aj) denote a grid
function. Assume N to be even and define the discreteIf we assume iDi2 to vary on a time-scale much slower
Fourier transform of f bythan DT, we can use this estimate to adaptively adjust the

next DT to keep the error in the approximate system on
a constant level. We enforce the relative error f(aj) 5 f̂0 1 ON/221

g51
f̂s(g) sin(gaj) 1 ON/2

g51
f̂c(g) cos(gaj),

iei2/iF̃i2 # d by taking
(101)

DT 5 d1/3 S3iF̃i2

iDi2
D1/3

. (98) where

To integrate the solution from time 0 to T, the approxi- f̂0(g) 5
1
N ON

j51
f(aj), (102)

mate system must be formed NT 5 T/DT times. The local
errors in each time interval will accumulate to a global

f̂s(g) 5 2
2
N ON

j51
f(aj) sin(gaj), (103)relative error at time T, E(T) ; iF(T) 2 F̃(T)i2/iF̃(T)i2 ,

which can be expected to be of the order

f̂c(g) 5
2
N ON

j51
f(aj) cos(gaj). (104)

E(T) 5O(NT d) 5O STd 2/3 S iDi2

3iF̃i2

D1/3D . (99)

Also define the operator Dh to be the filtered spectral
approximation of ­/­a:During the integration up to time T, the integral equa-

tion (9) and the velocity integral (10) must be solved 2NT

times. The time-step in the explicit integration of the ap- Dh fj 5 ON/221

g51
gp(gh) f̂s(g) cos(gaj)

(105)proximate system is independent of d so the effort in solv-
ing the approximate system is of the order

2 ON/221

g51
gp(gh) f̂c(g) sin(gaj).

2TCD(N)d 21/3 S iDi2

3iF̃i2

D1/3

1 TCA(N), (100)
The requirements on the filter function p will be de-
scribed below.

where CD(N) denotes the cost of solving (9), (10) and The discrete version of the full system can be written
CA(N) is the cost of integrating the approximate system
per unit-time. Note that both CD and CA depend on the dfj

dt
5

1
2

(u2
j 1 v2

j ) 2 kj , (106)number of grid points N. It is our experience that the first
term of (100) dominates the second term. In order to halve
the error E(T), d must decrease by a factor 1/Ï8, which dXj

dt
5 uj , (107)increases the d-dependent cost of computing the solution

by a factor Ï2. These estimates will be verified by the
numerical examples in Section 5. dYj

dt
5 vj , (108)

4. DISCRETIZING THE SYSTEMS
for 1 # j # N. The discretization suggested by [5] is

4.1. Discretization in Space

The details of the discretization are essential for the kj 5
(DhX q

j )(D2
hYj) 2 (DhY q

j )(D2
hXj)

((DhX q
j )2 1 (DhY q

j )2)3/2 , (109)
temporal stability of the spatially discrete problem and will
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performed a stability analysis of different spatial discreti-
zations of a vortex sheet, subject to surface tension closeuj 2 ivj 5

cj

2DhZj
1

h
f i ON

k51
( j2k)odd

ck

Z p
k 2 Z p

j

, (110)
to equilibrium. We refer to [1, 16] for a motivation of
the quadrature rule (111) for the integral equation (9).where Zk 5 Xk 1 iYk . The integral equation for the vortex
Furthermore, it should be noted that filtered pseudo-spec-sheet strength (9) is discretized by the alternating point
tral discretizations have previously been used and analyzedtrapezoidal rule:
in the context of hyperbolic systems [12, 17]. An alternative
approach to the filtering used in the present paper is de-
scribed in [11]. In that method an unfiltered spectral deriva-Dhfj 5

cj

2
1 ReHhDhZj

f i ON
k51

( j2k)odd

ck

Z p
k 2 Z p

j
J . (111)

tive (p(x) ; 1) is successfully used, together with an explicit
Fourier filtering of the dependent variables after every
time-step. That technique was also attempted for the pres-Each variable with a superscript p in (110) and (111) is
ent problem, but it did not work. One reason might befiltered by the Fourier filter
that the discretization of the curvature induces aliasing
instabilities in the present formulation, since the curvature

X p
j 5 p(0)X̃0 1 ON/221

g51
p(gh)X̂s(g) sin(gaj)

(112)
is nonlinear in terms of X and Y. In the formulation used
by [11], the curvature is expressed as the arc-length deriva-
tive of the tangent angle which can be discretized without

1 ON/2

g51
p(gh)X̂c(g) cos(gaj) aliasing errors.

The dense nonsymmetric matrix in (111) depends on the
shape of the domain and will hence change with time. Itand the superscript q in (109) indicates that the variable
is therefore not economical to LU-decompose the matrixis Fourier-filtered by a corresponding expression with the
every time (111) needs to be solved. Instead, we solve thefunction p(x) replaced by q(x) 5 d/dx(xp(x)). The theory
integral equation by the iterative method GMRES [15].in [5] requires the filter function p to have at least two
By using the solution from the previous time level as ancontinuous derivatives and to satisfy p(x) $ 0 for 0 #
initial guess, the iteration converges to roundoff level in ax # f, p(0) 5 1, p(f) 5 0, and, due to surface tension,
few iterations. We have used direct summation to evaluatep9(f) 5 0. Furthermore, the discretization will have spec-
the matrix–vector products in the GMRES iterations andtral accuracy if p(x) ; 1 for 0 # x # lf, 0 , l , 1. In
for computing the velocity. The operational count for thesethe present work, we will use the C y-smooth filter:
operations is of the order O(N 2). We note that for large
N, the cost of performing these tasks could be reduced top(x) 5
O(CN), where C is a large constant, by using the fast
multipole method [9].

The approximate system (16)–(18) is discretized by5
1, 0 # x #

2f
3

,

1 2 S1 1 exp S 0.75
x 2 f

1
1.8

x 2 2f/3DD21

,
2f
3

, x , f,

0, x 5 f.

df̃j

dt
5

1
2

(ũ2
j 1 ṽ2

j ) 2 kj 1 (t 2 t0)G p
1 j , (114)

(113) dX̃j

dt
5 ũj 1 (t 2 t0)G p

2 j , (115)
This filter function is similar to p̃(x) 5 exp(210(x/f)25),
which was used in [5]. However, we found by numerical dỸj

dt
5 ṽj 1 (t 2 t0)G p

3 j , (116)experiments that the high frequency components of the
solution became slightly smaller when (113) was used
rather than p̃(x). One theoretical reason for this might be As for the full system, (109) is used to discretize the curva-
that p̃(f) P 4.5 3 1025 and p̃9(f) P 3.6 3 1023 are nonzero. ture. Furthermore, we discretize the approximate velocity

Note that the dependent variables (fj , Xj , Yj)T, 1 # (66) according to
j # N, are not filtered explicitly in this method. The filter
is only applied when the right-hand side of (106)–(108) is

ũj 5 Tjs̃jDhf̃j 1 Nj(u(0)
j ? Nj 1 s̃jHcalculated, i.e., during the evaluation of the curvature, the

solution of the integral equation, and the computation of
[Dhf9j 2 u(0)

j DhX 9j 2 v(0)
j DhY 9j ]),the boundary velocity.

We remark that the merits of the alternating point dis-
cretization in (110) was also demonstrated by [4], who where f9j 5 f̃j 2 f(0)

j , etc. The discrete unit tangent and
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normal vectors are defined by T j 5 s̃j(DhX̃j , DhỸj)T and
Nj 5 s̃j(2DhỸj , DhX̃j)T, respectively, with

s̃j 5 1/Ï(Dh X̃j)2 1 (Dh Ỹj)2.

Since the operator H has Fourier symbol i sgn(g), it sat-
isfies

H [ f ](aj) 5 ON/251

g51
f̂s(g) cos(gaj) 2 ON/221

g51
f̂c(g) sin(gaj).

(117)

The discrete forcing Gj is computed by a formula corre-
sponding to (88)–(90) with « 5 1024 in the numerical differ-
entiation of u and ũ. As is indicated in (114)–(116), we
filter the forcing by (112). The filtering was found to be
necessary to achieve a stable and convergent solution.

FIG. 1. The neutral stability curve in the complex plane for some4.2. Time-Integration
explicit time-integration methods: second-order Adams–Bashforth
(solid); second-order Runge–Kutta (long-dashed); second-order AdamsBoth the discretized full and approximate problems can
predictor–corrector (short-dashed); Hyman’s third-order methodbe written as large nonlinear systems of ordinary differen-
(dotted); and fourth-order Runge–Kutta (dot-dashed). The stability re-

tial equations, gion S for each method is the bounded domain inside of the corresponding
neutral stability curve.

wt 5 A(w)w 1 b(t),

where w and b are 3N-vectors and A(w) is a 3N 3 3N-
ical growth of the eigenmodes which correspond to purelymatrix. The forcing b is only present for the approximate
imaginary eigenvalues, it is important that the time-integ-system. When a system of ordinary differential equations is
rator is stable for such eigenvalues. The stability regionintegrated in time with an explicit time-integration method,
includes an interval of the imaginary axis for the second-the time-step Dt must satisfy a stability constraint of the
order Adams predictor–corrector method, Hyman’s third-type
order scheme and the classical fourth-order Runge–Kutta
method. However, neither the second-order Adams–Dtlk [ S , C (118)
Bashforth method, nor the second-order Runge–Kutta
scheme are stable for purely imaginary eigenvalues; cf. [10].for all eigenvalues lk of A(w), where S is the stability

We demonstrate the importance of the stability regionregion in the complex plane, cf. [8]. Figure 1 shows the
by integrating the discrete full system (106)–(108) numeri-stability region for some popular time-integration methods
cally with the initial datawhen A is independent of w. The stability region is gener-

ally smaller for nonlinear systems.
f0(a) 5 0,To estimate the eigenvalues lk of the operator A, we

linearized the discretized full system around a circular X0(a) 5 1.25 cos(a), (120)
cross-section and a constant velocity potential. A straight-

Y0(a) 5 0.8 sin(a).forward constant coefficient analysis similar to that for the
continuous problem in Section 2 showed that

The solution was integrated up to time t 5 0.085 with
three of the time-integrators described above: fourth-orderl(1)

k 5 0, l(2,3)
k 5 6i(s (0)p(huku)uku)3/2, (119)

Runge-Kutta, second-order Adams–Bashforth, and sec-
2N/2 1 1 # k # N/2, ond-order Runge–Kutta. The resolution in the calculations

was N 5 256. For all time-integrators, we used a time-step
restriction of the type Dt 5 CDt /max ulku, where ulku wasif lower order terms in k are neglected.

There are many time-integration methods that could estimated with (119). For the fourth-order Runge–Kutta
scheme we used CDt 5 2.5, which is inside of the stabilitybe used for the present problem. Here we will limit the

discussion to the methods shown in Fig. 1. To avoid unphys- region. Because both the second-order Runge–Kutta
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intersection of the positive imaginary axis and the stability
region S ; see Fig. 1. The largest stable time-step is propor-
tional to CDt, but the efficiency of the different methods
also depends on the number of function evaluations neces-
sary to complete one time-step. The second-order Adams
predictor–corrector needs 2, Hyman’s third-order method
uses 2, and the fourth-order Runge–Kutta requires 4 func-
tion evaluations. By comparing the ratio between CDt and
the number of function evaluations we find that the meth-
ods are comparable in terms of efficiency. We will use the
fourth-order Runge–Kutta method in the present work.
We refer to [10] for a more thorough analysis of different
time-integration methods.

A similar analysis for the discretized approximate system
shows also that these equations must be integrated in time
with a method that is stable for purely imaginary eigenval-
ues. For the same reasons as above, the fourth-orderFIG. 2. The magnitude of the Fourier coefficients uf̂(g, t)u at time
Runge–Kutta scheme will be used also for that problem.t 5 0.085 calculated by solving the discretized full system starting from

the initial data (120). The solid line was computed with the fourth-order
Runge–Kutta scheme, the dashed line with the second-order Runge– 5. NUMERICAL EXPERIMENTS
Kutta method, and the dotted line with the second-order Adams–
Bashforth scheme. To study the evolution of a slender three-dimensional

jet, we consider the family of initial data given by

scheme and the second-order Adams–Bashforth method f0(a) 5 0, (121)
are unstable, according to the above theory, it is hard to

X0(a) 5 a cos a, (122)specify a meaningful time-step restriction. Here we used
a stability limit that corresponds to the same number of

Y0(a) 5
1
a

sin a. (123)function evaluations per unit time as the fourth-order
Runge–Kutta scheme. This leads to CDt 5 0.625 for the
second-order Adams–Bashforth method and CDt 5 1.25

Hence, the initial cross-sectional velocity is zero and the
for the second-order Runge–Kutta scheme.

initial cross section is elliptical with area f and aspect ratio
To study the stability, it is instructive to monitor the

AR 5 a2. If a 5 1, the solution of the full system is trivially
time-evolution of the magnitude of the Fourier coefficients

given by f(a, t) 5 2t, X(a, t) 5 cos a, and Y(a, t) 5 sinuf̂(g, t)u 5: max(uf̂s(g, t)u, uf̂c(g, t)u). Because of symmetries
a. The symmetry between the x and y directions makes it

in the initial data, uf̂(g, t)u 5 0, for t $ 0, g 5 1, 3, 5, ....
sufficient to study a . 1.

Therefore, only even frequencies will be presented in the
Unless otherwise mentioned, the computations pre-

graphs of f̂. The results are shown in Fig. 2. Clearly, the
sented below were performed in 64-bit precision on a DEC-

fourth-order Runge–Kutta scheme is stable, but both the
a machine with 134.8 SPECfp92 and 64 Mb RAM. The

second-order Adams–Bashforth and the second-order
Fourier transforms were computed by the FFT-package

Runge–Kutta schemes are unstable and we can see that
for real-valued functions in the SLATEC library and the

the high frequency Fourier coefficients have grown sub-
time-step in the explicit time-integration was taken to be

stantially already at t 5 0.085. The fourth-order Runge–
Dt 5 2.5/maxk ulku, with lk estimated by (119).

Kutta calculation was continued up to time t 5 3.0 and
showed no sign of instability. However, the second-order

5.1. The Full System
Runge–Kutta computation blew up at time t P 0.14 and
the second-order Adams–Bashforth exploded at t P 0.22. To make sure that the discretization scheme for the full

system is stable and convergent we studied the FourierWe observed that the growth could be reduced, but not
eliminated, by taking a smaller time-step. Since a smaller coefficients uf̂(g, t)u 5: max(uf̂s(g, t), uf̂c(g, tu) at fixed

time levels for different AR and different resolutions. Atime-step makes the methods less efficient than the fourth-
order Runge–Kutta scheme, they will not be considered representative example is given in Fig. 3, where the case

AR 5 2.0 at time t 5 3.0 is shown. Note that roundofffurther.
We proceed by comparing the efficiency of the stable errors prevent the Fourier modes from decaying below

approximately 10216. It can be seen that the highest modestime-integration methods shown in Fig. 1. Let CDt be the
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FIG. 4. The number of accurate digits in the perturbation energyFIG. 3. The spectrum of f as function of g at time t 5 3.0 computed
by solving the discretized full system for the case AR 5 2.0. E(t) in the solution of the discretized full system as function of time for

the case AR 5 2.0.

remain small for long times and that the lower half of the
modes converge well as the resolution is increased. This 5832 s of CPU time to reach time t 5 5.0. From this example
is numerical evidence for the stability and convergence of it is clear that simulating only the first one or two oscilla-
the discretized full system. tions of a jet with high initial aspect ratio, which calls for

To check the accuracy of the numerical solution, we will a large N to resolve the solution, requires a substantial
monitor the perturbation energy E(t), which is a conserved amount of CPU time. In these cases we are interested in
quantity not conserved by the discretization [11, 14]. The speeding up the computation by replacing the full system
energy consists of two components, by the approximate system. One oscillation of the jet yields

important information for engineering applications [7], and
E(t) 5 K(t) 1 S(t), (124) we will henceforth restrict our study to the time interval

where K(t) is the perturbed kinetic energy,

K(t) 5
1
2
E

V
Ïu2 1 v2 dV 5

1
2
E2f

0
(Yau 2 Xav) f da,

and S(t) is the interfacial energy,

S(t) 5 E2f

0
ÏX 2

a 1 Y 2
a da 2 2f.

The integrals are evaluated numerically by the trapezoidal
rule, which is spectrally accurate since the integrands are
periodic in a.

In Fig. 4, we present 2log10 uE(t) 2 E(0)u as function of
t, which is an estimate of the number of accurate digits in
the perturbation energy. E(t) 2 E(0) is also a measure of
the error in the numerical solution, and it can be seen from
Fig. 4 that it is approximately proportional to 102CN, for
some constant C . 0. This indicates that the numerical

FIG. 5. A rendered image of the free surface as function of time.solution is spectrally accurate.
The initial cross section with AR 5 3.0 is in the lower left corner. Time

The shape of the free surface as function of time for the increases diagonally upwards and reaches t 5 5.0 in the upper right corner.
case with AR 5 3.0 and the resolution N 5 256 is presented Note the chain-like appearance of the free surface which is observed in

slender three-dimensional jets [7].in Fig. 5. This simulation of the full system required
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example we see that the error is approximately propor-
tional to DT 2. Also note that the estimated relative error,

Eest 5 ONT

k51

DT 3 iD(tk)i2

3iF̃(tk)i2

, (125)

consistently overpredicts the actual relative error by a fac-
tor P3. To indicate how much CPU time is saved by using
the approximate system, we also present the average num-
ber of explicit time-steps per DT, defined by

DT
Dt

5
1

NT
ONT

k51

DT
Dt(tk)

.
FIG. 6. The spectrum of f̃ as function of g at time t 5 3.0 computed

by solving the discretized approximate system with DT 5 0.01 for the
case AR 5 2.0. Twice the DT/Dt ratio gives a rather good estimate of

how much faster it is to integrate the approximate system
compared to the full system, because two Dirichlet prob-
lems are solved every time the velocity term is linearized,0 # t # 3, which approximately corresponds to the first
and four Dirichlet problem are solved per explicit time-oscillation of the cross section.
step when the full system is integrated. Note that the effi-
ciency of the full system would have been similar if, for5.2. The Approximate System
instance, the second-order Adams predictor–corrector

Similar to the full system, we studied the stability and method had been used as time-integrator. In that case,
convergence of the discretized approximate system by only two Dirichlet problems need to be solved per explicit
computing the spectrum of f̂ for different initial conditions time step, but the largest stable time-step is less than half
and resolutions. In addition, the time interval DT between of that of the fourth-order Runge–Kutta method.
linearizing the velocity was varied. A typical example is According to (95)–(97), the error in the approximation
shown in Fig. 6, where the case AR 5 2.0 with DT 5 0.01 satisfies DDT 3/3 1 O(DT 4). To show that D is essentially
at time t 5 3.0 is presented. Since the lower half of the independent of DT we present in Fig. 7 the L2-norm of
Fourier modes converge well, and the highest modes re- D as a function of time for DT 5 0.01 and DT 5 0.0025.
main small for long times, we conclude that the discretiza- Again, the initial data had AR 5 3.0 and the resolution
tion of the approximate system is stable and convergent. was N 5 256. Because the approximation is based on sim-

We proceed by studying how the error in the discretized plifying the normal component of the velocity, the error
approximate system depends on the time-interval between in the approximation can be suspected to depend on the
linearizing the velocity, DT. In Table I, we present the properties of that quantity. To enable a close comparison,
relative error at time t 5 3.0 for the case AR 5 3.0 with we also present the max-norm of the normal velocity in
N 5 256. The solution of the full system with the same Fig. 7. We conclude that there is a clear correlation in time
resolution was taken as the reference solution. From this between the normal velocity and the error term D. From

this conclusion, we are led to investigate how the size of
the normal velocity affects the stability and the accuracy
of the time integration. In particular, we are interested inTABLE I
how large DT can be before the time integration goes

Results from Integrating the Approximate System with a unstable and how small DT must be to maintain a constant
Fixed Time Interval DT between Linearizing the Velocity. error level when the normal velocity increases. We there-

fore took initial data with increasing AR, which correspond
DT Est. error Rel. error CPU (s) NT DT/DT

to an increasing normal velocity and curvature, and in-
1.0 3 1022 4.64 3 1023 1.35 3 1023 336 300 6.25 creased DT until the solution would blow up. The largest
5.0 3 1023 1.15 3 1023 3.24 3 1024 638 600 3.13 DT, where the solution did not blow up as a function of
2.5 3 1023 2.86 3 1024 8.02 3 1025 1218 1200 1.56 the maximum norm of the normal velocity, can be found

in Fig. 8. In these computations, AR was in the rangeNote. The error is approximately proportional to DT 2. In this example,
1.5–3.5 and the resolution was in the range N 5 128–512.AR 5 3.0, N 5 256, and the solutions were computed at time t 5 3.0.

The full system required 3308 s of CPU time. We found that N 5 128 only provided adequate resolution
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FIG. 8. The largest stable DT as function of the maximum norm of
the normal velocity on a log–log scale. The initial data had AR 5 1.5 2

3.5. The resolution was in the range N 5 128 2 512, where N 5 128 are
circles, N 5 256 are triangles, N 5 384 are pluses, and N 5 512 are
denoted by X’s. Note that DT is essentially independent of N.

as function of DT for initial data with aspect ratio in the
range 1.5–3.5. The solution of the full system was taken
as reference solution. The results are presented in Fig. 9.
The time-step DT must be decreased to maintain a fixed
error level when the aspect ratio and, therefore, the curva-
ture are increased. This is because the normal velocity
increases as the aspect ratio of the initial cross section
increases (cf. Table II), and a larger normal velocity leads
to a larger error term D.FIG. 7. Top graph: The L2-norm of the error term D as function of

We note that iDi2 varies by an order of magnitude intime for DT 5 0.01 (solid) and DT 5 0.0025 (dotted). Bottom graph: The
Fig. 7. From the error estimate (125), we see that a largemax-norm of the normal component of the velocity as functions of time.

In both graphs the aspect ratio was AR 5 3.0 and N 5 256. portion of the error is committed when iDi2 is large. To
better optimize the computational resources, we will em-
ploy the adaptive time-step control (98). In Table III, we
compare the solution of the approximate system with the

for AR # 2.5 and N 5 256 was only good for AR # 3.0. solution of the full system at time t 5 3.0. In this case,
The resolution N 5 384 was adequate to resolve all AR AR 5 3.0 and N 5 256. In this table, the estimated relative
and the N 5 512 resolution was used to verify the N 5 error (125) is compared to the actual relative error, where
384 computations. The data points fall on an almost straight the solution of the full system with the same resolution
line with slope P22.6 in the log–log graph, so we are led was taken as the reference solution. Note that (99) predicts
to the estimate that the relative error should halve when d is decreased

by a factor of 1/Ï8. Our numerical results confirm this
estimate. Also note that the estimated error is consistentlyDT #

C

(uu ? N uy)c
, c P 2.6, (126)

overpredicting the actual error by a factor P3.
By comparing the number of linearizations, NT , to the

CPU time in Table III, we see that the CPU time/NT ratiowhere C is independent of N. Therefore, as long as DT
satisfies (126), it can be chosen to meet accuracy require- decreases as NT increases. This indicates that the CPU

time is not only spent setting up the approximate system,ments, instead of stability restrictions.
To assess the accuracy of the approximate system, we but also it is used for integrating the approximate system.

Therefore, the CPU time/NT ratio is larger when NT iscomputed the relative error in the solution at time t 5 3.0
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FIG. 9. The relative error as function of DT in the solution of the discretized approximate system at time T 5 3.0. The initial data had aspect
ratio in the range 1.5–3.5.

smaller. The estimate (100) predicts that NT would increase reported in Table III and IV are therefore dominated by
errors committed by simplifying the velocity in the approxi-by a factor Ï2 when d is decreased by a factor 1/Ï8. In

the present example, NT increases slightly slower than that. mate system.
The estimate (100) indicates that the cost of solving theTo study how the resolution affects the solution of the

approximate system, we doubled the number of grid points approximate system would increase by a factor between 4
and 4Ï2 when N is doubled, because CD increases by ato N 5 512. The result is presented in Table IV. In this

case the reference solution was taken to be the solution factor 4 and CA increases by a factor 4Ï2, since the number
of time-steps for integrating the approximate system in-of the full system with N 5 512. It can be seen that the

relative error is essentially the same as for N 5 256. This creases by a factor 2Ï2 and the effort in evaluating the
right-hand side of the system doubles. This estimate isis explained by the fact that the relative difference between

the solutions of the full systems with N 5 256 and N 5 verified by comparing the CPU-timings of Tables III and
IV. This should be compared to the cost of solving the full512, respectively, is only 5.87 3 1025. The relative errors
system, which increases by a factor 8Ï2 when N is doubled,

TABLE II
TABLE IIIThe Relation between the Aspect Ratio of the Initial Data,

the Maximum Norm of the Normal Velocity, and the Maximum Results from Integrating the Approximate System with a
Fixed d.Norm of the Curvature.

AR uu ? Nuy ukuy d Est. error Rel. error CPU (s) NT DT/DT

1.25 3 1024 1.90 3 1022 8.72 3 1023 193 148 12.81.5 0.59 1.84
2.0 1.16 2.83 4.42 3 1025 8.94 3 1023 3.32 3 1023 242 200 9.43

1.56 3 1025 4.38 3 1023 1.56 3 1023 322 280 6.732.5 1.82 3.95
3.0 2.63 5.20 5.52 3 1026 2.18 3 1023 7.53 3 1024 435 394 4.78

1.95 3 1026 1.08 3 1023 3.67 3 1024 592 556 3.393.5 3.12 7.48

Note. The maximum norm refers to the largest value during the time Note. In this case, AR 5 3.0, N 5 256, and the solutions were compared
at time t 5 3.0. The full system required 3308 s of CPU time.interval 0 # t # 3.0.
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TABLE IV

Results from Integrating the Approximate System with a
Fixed d.

d Est. error Rel. error CPU (s) NT DT/DT

1.25 3 1024 1.90 3 1022 7.72 3 1023 815 148 36.1
4.42 3 1025 8.96 3 1023 3.13 3 1023 1017 200 26.6
1.56 3 1025 4.39 3 1023 1.55 3 1023 1290 280 19.0
5.52 3 1026 2.18 3 1023 7.53 3 1024 1729 394 13.5
1.95 3 1026 1.08 3 1023 3.67 3 1024 2280 556 9.57

Note. In this case, R 5 3.0, N 5 512, and the solutions were compared
at time t 5 3.0. The full system required 30,997 s of CPU time.

because the cost of solving a Dirichlet problem increases
by a factor 4 and the number of time-steps increases by a
factor 2Ï2. The CPU timings for the full system also con-
firm this estimate. For this reason the relative saving in
CPU time by using the approximate system increases when
the resolution increases. For example, at this resolution,
we only have to spend 3.3% of the CPU time required FIG. 10. Time evolution of the cross section of the jet with initial

aspect ratio AR 5 5.0. Top graph: t 5 0.00 to t 5 0.65 with spacing 0.05.by the full system to achieve a solution with the relative
Bottom graph: t 5 0.70 to t 5 1.25 with spacing 0.05. Here, t 5 0.70 iserror 0.33%.
solid, t 5 0.75 is dotted, t 5 0.80 is dashed, t 5 0.85 is long-dashed, t 5We conclude by using the approximate system to simu-
0.90 is dot-dashed, t 5 0.95 is solid, t 5 1.00 is dotted, t 5 1.05 is dashed,

late the complicated dynamics emanating from initial data t 5 1.10 is long-dashed, t 5 1.15 is dot-dashed, t 5 1.20 is solid, and t 5
with AR 5 5.0. In Fig. 10, we show the time-evolution of 1.25 is dotted.
the cross-sections of the jet. This simulation was done with
the resolution N 5 1536 and DT 5 1.0 3 1023. It required

metric three-dimensional jet subject to surface tension,7322 s of CPU time on one processor on a CRAY YMP.
where the evolution of the cross section of the jet is gov-The average DT/DT ratio was 7.68, whichi indicates that
erned by the two-dimensional Euler equations inside ofit would have taken approximately 15 times longer to com-
the free surface. It has been demonstrated numerically thatpute this solution if the full system had been used. The
the error increases with increasing normal velocity anderror estimate (125) predicted that the relative error at
curvature and that there is a stability limit of the formtime t 5 1.25 was 9.0 3 1024.
DT # C/(uu ? N uy)c, where u ? N denotes the normal velocity
and c P 2.6. Importantly, C is independent of the resolu-

6. CONCLUSIONS
tion. Hence, the time-step DT can be chosen independently
of the number of grid points, N, as long as it satisfies theWe have presented a system of partial differential equa-
stability constraint governed by the normal velocity. Thistions that approximate the governing equations for inviscid
is in contrast to the time-step when the original system isfree surface flows subject to surface tension. The approxi-
integrated, where the stability limit is Dt # O(N 23/2) andmation is based on repeated linearization of the normal
a constant number of Dirichlet problems have to be solvedcomponent of the boundary velocity, together with a small
per Dt. Therefore, the relative saving of CPU time by usingscale approximation of the perturbation of the velocity.
the approximate system increases when the resolution in-Two Dirichlet problems must be solved to form the approx-
creases.imate system, after which it can be evolved without solving

Dirichlet problems. The accuracy of the solution of the ACKNOWLEDGMENT
approximate system is determined by the magnitude of the
normal velocity and by how often the velocity term is This work was supported by the U.S. Department of Energy through

Los Alamos National Laboratory under Contract W-7405-ENG-36.linearized. This time interval is denoted DT. We have
shown that the error in the solution of the approximate

REFERENCES
system at a fixed time T is of the order O(DT 2). We have
exemplified the use of the approximate system by in- 1. C. T. H. Baker, The Numerical Treatment of Integral Equations

(Clarendon Press, Oxford, 1977).tegrating the equations governing a slender nonaxisym-



426 N. ANDERS PETERSSON

2. G. R. Baker, ‘‘Generalized Vortex Methods for Free-Surface Flows,’’ 9. L. Greengard and V. Roklin, J. Comput. Phys. 105, 267 (1987).
in Waves on Fluid Interfaces, edited by R. Meyer (University of 10. B. Gustafsson, H.-O. Kreiss, and J. Oliger, Time Dependent Problems
Wisconsin Press, Madison, 1983). and Difference Methods (Wiley-Interscience, New York, 1995).

3. G. R. Baker and D. W. Moore, Phys. Fluids A 1, 1451 (1989). 11. T. Y. Hou, J. Lowengrub, and M. J. Shelley, J. Comput. Phys. 114,
4. G. R. Baker and A. Nachbin, Technical Report 92-23, Dept. of Mathe- 312 (1994).

matics, Ohio State University, 1992 (unpublished). 12. H.-O. Kreiss and J. Oliger, SIAM J. Numer. Anal. 16(3), 421 (1979).
5. J. T. Beale, T. Y. Hou, and J. S. Lowengrub, SIAM J. Numer. Anal.

13. N. A. Petersson and H.-O. Kreiss, LA-UR 94-2978, Los Alamos
33(5), (1996).

National Laboratory, NM, 1994 (unpublished).
6. J. T. Beale, T. Y. Hou, and J. S. Lowengrub, Commun. Pure Appl.

14. D. I. Pullin, J. Fluid Mech. 119, 507 (1982).Math. 46, 1269 (1993).
15. Y. Saad and M. H. Schultz, SIAM J. Sci. Stat. Comput. 7, 856 (1986).7. S. E. Bechtel, J. Appl. Mech. 56, 968 (1989).
16. A. Sidi and M. Israeli, J. Sci. Comput. 3, 323 (1988).8. G. Dahlquist and Å. Björk, Nunerical Methods (Prentice–Hall,
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